Topic:Domain Generalization
What is Domain Generalization? Domain generalization is the process of training models that can generalize to unseen domains or datasets.
Papers and Code
Jan 08, 2025
Abstract:Retrieval-Augmented Generation (RAG) has become ubiquitous when deploying Large Language Models (LLMs), as it can address typical limitations such as generating hallucinated or outdated information. However, when building real-world RAG applications, practical issues arise. First, the retrieved information is generally domain-specific. Since it is computationally expensive to fine-tune LLMs, it is more feasible to fine-tune the retriever to improve the quality of the data included in the LLM input. Second, as more applications are deployed in the same real-world system, one cannot afford to deploy separate retrievers. Moreover, these RAG applications normally retrieve different kinds of data. Our solution is to instruction fine-tune a small retriever encoder on a variety of domain-specific tasks to allow us to deploy one encoder that can serve many use cases, thereby achieving low-cost, scalability, and speed. We show how this encoder generalizes to out-of-domain settings as well as to an unseen retrieval task on real-world enterprise use cases.
* 9 pages, 2 figures. Submitted to NAACL 2025 Industry Track
Via
Jan 08, 2025
Abstract:Despite the considerable performance improvements of face recognition algorithms in recent years, the same scientific advances responsible for this progress can also be used to create efficient ways to attack them, posing a threat to their secure deployment. Morphing attack detection (MAD) systems aim to detect a specific type of threat, morphing attacks, at an early stage, preventing them from being considered for verification in critical processes. Foundation models (FM) learn from extensive amounts of unlabeled data, achieving remarkable zero-shot generalization to unseen domains. Although this generalization capacity might be weak when dealing with domain-specific downstream tasks such as MAD, FMs can easily adapt to these settings while retaining the built-in knowledge acquired during pre-training. In this work, we recognize the potential of FMs to perform well in the MAD task when properly adapted to its specificities. To this end, we adapt FM CLIP architectures with LoRA weights while simultaneously training a classification header. The proposed framework, MADation surpasses our alternative FM and transformer-based frameworks and constitutes the first adaption of FMs to the MAD task. MADation presents competitive results with current MAD solutions in the literature and even surpasses them in several evaluation scenarios. To encourage reproducibility and facilitate further research in MAD, we publicly release the implementation of MADation at https: //github.com/gurayozgur/MADation
* Accepted at WACV 2025 workshops
Via
Jan 08, 2025
Abstract:Generalization is the core objective when training optimizers from data. However, limited training instances often constrain the generalization capability of the trained optimizers. Co-evolutionary approaches address this challenge by simultaneously evolving a parallel algorithm portfolio (PAP) and an instance population to eventually obtain PAPs with good generalization. Yet, when applied to a specific problem class, these approaches have a major limitation. They require practitioners to provide instance generators specially tailored to the problem class, which is often non-trivial to design. This work proposes a general-purpose, off-the-shelf PAP construction approach, named domain-agnostic co-evolution of parameterized search (DACE), for binary optimization problems where decision variables take values of 0 or 1. The key innovation of DACE lies in its neural network-based domain-agnostic instance representation and generation mechanism that delimitates the need for domain-specific instance generators. The strong generality of DACE is validated across three real-world binary optimization problems: the complementary influence maximization problem (CIMP), the compiler arguments optimization problem (CAOP), and the contamination control problem (CCP). Given only a small set of training instances from these classes, DACE, without requiring any domain knowledge, constructs PAPs with better generalization performance than existing approaches on all three classes, despite their use of domain-specific instance generators.
Via
Jan 07, 2025
Abstract:Retinal vascular morphology is crucial for diagnosing diseases such as diabetes, glaucoma, and hypertension, making accurate segmentation of retinal vessels essential for early intervention. Traditional segmentation methods assume that training and testing data share similar distributions, which can lead to poor performance on unseen domains due to domain shifts caused by variations in imaging devices and patient demographics. This paper presents a novel approach, DGSSA, for retinal vessel image segmentation that enhances model generalization by combining structural and style augmentation strategies. We utilize a space colonization algorithm to generate diverse vascular-like structures that closely mimic actual retinal vessels, which are then used to generate pseudo-retinal images with an improved Pix2Pix model, allowing the segmentation model to learn a broader range of structure distributions. Additionally, we utilize PixMix to implement random photometric augmentations and introduce uncertainty perturbations, thereby enriching stylistic diversity and significantly enhancing the model's adaptability to varying imaging conditions. Our framework has been rigorously evaluated on four challenging datasets-DRIVE, CHASEDB, HRF, and STARE-demonstrating state-of-the-art performance that surpasses existing methods. This validates the effectiveness of our proposed approach, highlighting its potential for clinical application in automated retinal vessel analysis.
Via
Jan 07, 2025
Abstract:Videoconferencing is now a frequent mode of communication in both professional and informal settings, yet it often lacks the fluidity and enjoyment of in-person conversation. This study leverages multimodal machine learning to predict moments of negative experience in videoconferencing. We sampled thousands of short clips from the RoomReader corpus, extracting audio embeddings, facial actions, and body motion features to train models for identifying low conversational fluidity, low enjoyment, and classifying conversational events (backchanneling, interruption, or gap). Our best models achieved an ROC-AUC of up to 0.87 on hold-out videoconference sessions, with domain-general audio features proving most critical. This work demonstrates that multimodal audio-video signals can effectively predict high-level subjective conversational outcomes. In addition, this is a contribution to research on videoconferencing user experience by showing that multimodal machine learning can be used to identify rare moments of negative user experience for further study or mitigation.
* ICASSP 2025
Via
Jan 08, 2025
Abstract:The Abstraction and Reasoning Corpus (ARC) evaluates general reasoning capabilities that are difficult for both machine learning models and combinatorial search methods. We propose a neuro-symbolic approach that combines a transformer for proposal generation with combinatorial search using a domain-specific language. The transformer narrows the search space by proposing promising search directions, which allows the combinatorial search to find the actual solution in short time. We pre-train the trainsformer with synthetically generated data. During test-time we generate additional task-specific training tasks and fine-tune our model. Our results surpass comparable state of the art on the ARC evaluation set by 27% and compare favourably on the ARC train set. We make our code and dataset publicly available at https://github.com/Batorskq/NSA.
Via
Jan 07, 2025
Abstract:The rapid advancement in large language models (LLMs) has significantly enhanced their ability to generate coherent and contextually relevant text, raising concerns about the misuse of AI-generated content and making it critical to detect it. However, the task remains challenging, particularly in unseen domains or with unfamiliar LLMs. Leveraging LLM next-token distribution outputs offers a theoretically appealing approach for detection, as they encapsulate insights from the models' extensive pre-training on diverse corpora. Despite its promise, zero-shot methods that attempt to operationalize these outputs have met with limited success. We hypothesize that one of the problems is that they use the mean to aggregate next-token distribution metrics across tokens, when some tokens are naturally easier or harder to predict and should be weighted differently. Based on this idea, we propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length. Although not zero-shot, our method allows us to cache the last hidden states and next-token distribution metrics on disk, greatly reducing the training resource requirements. PAWN shows competitive and even better performance in-distribution than the strongest baselines (fine-tuned LMs) with a fraction of their trainable parameters. Our model also generalizes better to unseen domains and source models, with smaller variability in the decision boundary across distribution shifts. It is also more robust to adversarial attacks, and if the backbone has multilingual capabilities, it presents decent generalization to languages not seen during supervised training, with LLaMA3-1B reaching a mean macro-averaged F1 score of 81.46% in cross-validation with nine languages.
Via
Jan 08, 2025
Abstract:Machine learning models, meticulously optimized for source data, often fail to predict target data when faced with distribution shifts (DSs). Previous benchmarking studies, though extensive, have mainly focused on simple DSs. Recognizing that DSs often occur in more complex forms in real-world scenarios, we broadened our study to include multiple concurrent shifts, such as unseen domain shifts combined with spurious correlations. We evaluated 26 algorithms that range from simple heuristic augmentations to zero-shot inference using foundation models, across 168 source-target pairs from eight datasets. Our analysis of over 100K models reveals that (i) concurrent DSs typically worsen performance compared to a single shift, with certain exceptions, (ii) if a model improves generalization for one distribution shift, it tends to be effective for others, and (iii) heuristic data augmentations achieve the best overall performance on both synthetic and real-world datasets.
* Accepted to TMLR
Via
Jan 08, 2025
Abstract:To preserve user privacy in recommender systems, federated recommendation (FR) based on federated learning (FL) emerges, keeping the personal data on the local client and updating a model collaboratively. Unlike FL, FR has a unique sparse aggregation mechanism, where the embedding of each item is updated by only partial clients, instead of full clients in a dense aggregation of general FL. Recently, as an essential principle of FL, model security has received increasing attention, especially for Byzantine attacks, where malicious clients can send arbitrary updates. The problem of exploring the Byzantine robustness of FR is particularly critical since in the domains applying FR, e.g., e-commerce, malicious clients can be injected easily by registering new accounts. However, existing Byzantine works neglect the unique sparse aggregation of FR, making them unsuitable for our problem. Thus, we make the first effort to investigate Byzantine attacks on FR from the perspective of sparse aggregation, which is non-trivial: it is not clear how to define Byzantine robustness under sparse aggregations and design Byzantine attacks under limited knowledge/capability. In this paper, we reformulate the Byzantine robustness under sparse aggregation by defining the aggregation for a single item as the smallest execution unit. Then we propose a family of effective attack strategies, named Spattack, which exploit the vulnerability in sparse aggregation and are categorized along the adversary's knowledge and capability. Extensive experimental results demonstrate that Spattack can effectively prevent convergence and even break down defenses under a few malicious clients, raising alarms for securing FR systems.
* accepted by AAAI 2025
Via
Jan 07, 2025
Abstract:Parkinson's Disease (PD) is a neurodegenerative disorder characterized by motor symptoms, including altered voice production in the early stages. Early diagnosis is crucial not only to improve PD patients' quality of life but also to enhance the efficacy of potential disease-modifying therapies during early neurodegeneration, a window often missed by current diagnostic tools. In this paper, we propose a more generalizable approach to PD recognition through domain adaptation and self-supervised learning. We demonstrate the generalization capabilities of the proposed approach across diverse datasets in different languages. Our approach leverages HuBERT, a large deep neural network originally trained for speech recognition and further trains it on unlabeled speech data from a population that is similar to the target group, i.e., the elderly, in a self-supervised manner. The model is then fine-tuned and adapted for use across different datasets in multiple languages, including English, Italian, and Spanish. Evaluations on four publicly available PD datasets demonstrate the model's efficacy, achieving an average specificity of 92.1% and an average sensitivity of 91.2%. This method offers objective and consistent evaluations across large populations, addressing the variability inherent in human assessments and providing a non-invasive, cost-effective and accessible diagnostic option.
Via